Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Globular clusters (GCs) provide statistically significant coeval populations of stars spanning various evolutionary stages, allowing robust constraints on stellar evolution model parameters and ages. We analyze eight old Milky Way GCs with metallicities between [Fe/H] = −2.31 and −0.77 by comparing theoretical isochrone sets from the Dartmouth Stellar Evolution Program to Hubble Space Telescope (HST) observations. The theoretical isochrones include uncertainties introduced by 21 stellar evolution parameters such as convective mixing, opacity, diffusion, and nuclear reactions, capturing much of the quantifiable physics used in our code. For each isochrone, we construct simulated color–magnitude diagrams (CMDs) near the main-sequence turnoff region and apply two full-CMD-fitting methods to fit HST Advanced Camera for Surveys data across a range of distances and reddening and measure the absolute age of each GC from the resulting posterior distribution, which accounts for uncertainties in the stellar models, observations, and fitting method. The resulting best-fitting absolute ages range from ≈11.5 to 13.5 Gyr, with a typical error of 0.5–0.75 Gyr; the data show a clear trend toward older ages at lower metallicities. Notably, distance and reddening account for over 50% of the uncertainty in age determination in each case, with metallicity,αabundance, mixing length, and helium diffusion being the most important stellar physics parameters for the error budget. We also provide an absolute age–metallicity relation for Milky Way GCs.more » « lessFree, publicly-accessible full text available June 26, 2026
-
Abstract We estimate the absolute age of the globular cluster NGC 3201 using 10,000 sets of theoretical isochrones constructed through Monte Carlo simulation using the Dartmouth Stellar Evolution Program. These isochrones take into consideration the uncertainty introduced by the choice of stellar evolution parameters. We fit isochrones with three detached eclipsing binaries and obtained an age independent of distance. We also fit isochrones with differential reddening corrected Hubble Space Telescope photometry data utilizing two different Hess diagram-based fitting methods. Results from three different methods analyzing two different types of data agree to within 1σ, and we find the absolute age of NGC 3201 = 11.85 ± 0.74 Gyr. We also perform a variable importance analysis to study the uncertainty contribution from individual parameters, and we find the distance is the dominant source of uncertainty in photometry-based analysis, while total metallicity, helium abundance,α-element abundance, mixing length, and treatment of helium diffusion are an important source of uncertainties for all three methods.more » « less
-
Differential reddening corrected HST ACS photometry, Monte Carlo Parameters and Monte Carlo isochrones used to estimate the absolute age of NGC3201. The columns in the NGC3201_fitstars_DRCR.dat file are:x = star x position on the master framey = star y position on the master framev = F606W VEGA magi = F814W VEGA magvi = V-I VEGAmag Detailed instruction to read MC parameters and MC isochrones can be found in the notebook: Instruction on reading NGC3201 isochrones.ipynbmore » « less
-
Abstract The absolute age of a simple stellar population is of fundamental interest for a wide range of applications but is difficult to measure in practice, as it requires an understanding of the uncertainties in a variety of stellar evolution processes as well as the uncertainty in the distance, reddening, and composition. As a result, most studies focus only on the relative age by assuming that stellar evolution calculations are accurate and using age determinations techniques that are relatively independent of distance and reddening. Here, we construct 20,000 sets of theoretical isochrones through Monte Carlo simulation using the Dartmouth Stellar Evolution Program to measure the absolute age of the globular cluster M92. For each model, we vary a range of input physics used in the stellar evolution models, including opacities, nuclear reaction rates, diffusion coefficients, atmospheric boundary conditions, helium abundance, and treatment of convection. We also explore variations in the distance and reddening as well as its overall metallicity andαenhancement. We generate simulated Hess diagrams around the main-sequence turn-off region from each set of isochrones and use a Voronoi binning method to fit the diagrams to Hubble Space Telescope Advanced Camera for Surveys data. We find the age of M92 to be 13.80 ± 0.75 Gyr. The 5.4% error in the absolute age is dominated by the uncertainty in the distance to M92 (∼80% of the error budget); of the remaining parameters, only the total metallicity,αelement abundance, and treatment of helium diffusion contribute significantly to the total error.more » « less
-
Abstract We present new period-ϕ31-[Fe/H] relations for first-overtone RRL stars (RRc), calibrated over a broad range of metallicities (−2.5 ≲ [Fe/H] ≲ 0.0) using the largest currently available set of Galactic halo field RRL with homogeneous spectroscopic metallicities. Our relations are defined in the optical (ASAS-SNVband) and, inaugurally, in the infrared (WISEW1andW2bands). OurV-band relation can reproduce individual RRc spectroscopic metallicities with a dispersion of 0.30 dex over the entire metallicity range of our calibrator sample (an rms smaller than what we found for other relations in literature including nonlinear terms). Our infrared relation has a similar dispersion in the low- and intermediate-metallicity range ([Fe/H] ≲ −0.5), but tends to underestimate the [Fe/H] abundance around solar metallicity. We tested our relations by measuring both the metallicity of the Sculptor dSph and a sample of Galactic globular clusters, rich in both RRc and RRab stars. The average metallicity we obtain for the combined RRL sample in each cluster is within ±0.08 dex of their spectroscopic metallicities. The infrared and optical relations presented in this work will enable deriving reliable photometric RRL metallicities in conditions where spectroscopic measurements are not feasible; e.g., in distant galaxies or reddened regions (observed with upcoming Extremely Large Telescopes and the James Webb Space Telescope), or in the large sample of new RRL that will be discovered in large-area time-domain photometric surveys (such as the LSST and the Roman space telescope).more » « less
-
null (Ed.)ABSTRACT Accurate metallicities of RR Lyrae are extremely important in constraining period–luminosity–metallicity (PLZ) relationships, particularly in the near-infrared. We analyse 69 high-resolution spectra of Galactic RR Lyrae stars from the Southern African Large Telescope. We measure metallicities of 58 of these RR Lyrae stars with typical uncertainties of 0.15 dex. All but one RR Lyrae in this sample has accurate ($$\sigma _{\varpi }\lesssim 10{{\ \rm per\ cent}}$$) parallax from Gaia. Combining these new high-resolution spectroscopic abundances with similar determinations from the literature for 93 stars, we present new PLZ relationships in WISE W1 and W2 magnitudes, and the Wesenheit magnitudes W(W1, V − W1) and W(W2, V − W2).more » « less
An official website of the United States government
